Coming Soon: A Nuclear Reactor—With a 3D Printed Core

Kurt Terrani wants to accelerate the future of nuclear energy—so he’s turned to its past. Over the last year and a half, Terrani and a team of physicists, engineers, and computer scientists at Oak Ridge National Lab in Tennessee have designed and built the components for a gas-cooled nuclear reactor. It’s a type of reactor that’s almost as old as the nuclear age itself, but Oak Ridge’s newest atom splitter has a distinctive 21st Century twist. When it comes online in 2023, it will be the first nuclear reactor in the world with a 3D printed core.

Image may contain: Universe, Space, Astronomy, Outer Space, Planet, Night, Outdoors, Moon, and Nature

The WIRED Guide to Climate Change

The world is getting warmer, the weather is getting worse. Here’s everything you need to know about what humans can do to stop wrecking the planet.

“What we’re doing is trying to figure out a faster way to build a nuclear system that has superior performance,” says Terrani, who is the technical director for the Oak Ridge Transformational Challenge Reactor program. “The goal is to fundamentally change the way we do nuclear.”

The nuclear industry has a reputation for being incredibly conservative and resistant to change, and Terrani laments that all of America’s nuclear reactors are still using technology that was dreamed up a half-century ago. The “if it ain’t broke, don’t fix it” mindset is a way to manage the inherent risk and exorbitant cost of building new nuclear plants, but it’s also stifled innovation in an industry that supplies the vast majority of America’s carbon-free energy. Terrani’s worry is that if the nuclear industry doesn’t embrace new technology, it will soon be obsolete.

This isn’t to say we should start building experimental nuclear plants without due diligence. The reason the nuclear industry moves so slowly is that the price of a miscalculation is huge—the accidents at Chernobyl and Fukushima were generation-defining disasters that no one wants to repeat. But risk aversion hasn’t stopped other notoriously stuffy industries from embracing new technologies. Just look at aerospace, where companies now 3D print entire rockets, fly self-landing planes, and catch boosters on drone ships. And anyway, most of the advanced reactors under development today aren’t entirely new; they’re modified designs of reactors that were successfully built decades ago. “We know all these concepts work,” says Terrani. “The problem is we can’t build them fast and cheap enough.”

Terrani and his colleagues are working on it. The Oak Ridge team recently finalized the preliminary design for the 3D printed core at the heart of its Transformational Challenge Reactor, or TCR. Although most of the reactor will be made from conventional components, the core will be entirely 3D printed out of silicon carbide, an extremely rugged material that is all but impossible to melt. The cylindrical core is a dull metallic silver with several irregular nonagon fuel assemblies arranged in its center. This is where all the magic happens in a nuclear reactor: It’s responsible for holding the uranium fuel and the components that control the fission reaction. The core designed and printed at Oak Ridge is less than a foot-and-a-half tall and will be housed in a reactor that isn’t much bigger than a beer keg. But when it comes online in 2023, Terrani says it will generate up to 3 megawatts of power, enough to meet the energy needs of more than 1,000 average homes.

The TCR is an advanced gas-cooled reactor that uses helium as coolant, whereas most operational reactors in the US today use water. Gas-cooled reactors are extremely fuel efficient because they operate at very high temperatures—this one will run at around 1,200 degrees Fahrenheit—and Terrani says that 3D printing the reactor core will boost the efficiency even higher. Moreover, traditional machining techniques for building a reactor core constrain their design. The complex network of cooling channels in the Oak Ridge core are too small and tortuous for any conventional machining techniques. But since 3D printers build an object by fusing metal together layer by layer, engineers can build previously impossible core designs.

Leave a Reply

Discover more from Ultimatepocket

Subscribe now to keep reading and get access to the full archive.

Continue reading