AI Helps Seismologists Predict Earthquakes

In May of last year, after a 13-month slumber, the ground beneath Washington’s Puget Sound rumbled to life. The quake began more than 20 miles below the Olympic mountains and, over the course of a few weeks, drifted northwest, reaching Canada’s Vancouver Island. It then briefly reversed course, migrating back across the US border before going silent again. All told, the monthlong earthquake likely released enough energy to register as a magnitude 6. By the time it was done, the southern tip of Vancouver Island had been thrust a centimeter or so closer to the Pacific Ocean.

Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research develop­ments and trends in mathe­matics and the physical and life sciences.

Because the quake was so spread out in time and space, however, it’s likely that no one felt it. These kinds of phantom earthquakes, which occur deeper underground than conventional, fast earthquakes, are known as “slow slips.” They occur roughly once a year in the Pacific Northwest, along a stretch of fault where the Juan de Fuca plate is slowly wedging itself beneath the North American plate. More than a dozen slow slips have been detected by the region’s sprawling network of seismic stations since 2003. And for the past year and a half, these events have been the focus of a new effort at earthquake prediction by the geophysicist Paul Johnson.

Johnson’s team is among a handful of groups that are using machine learning to try to demystify earthquake physics and tease out the warning signs of impending quakes. Two years ago, using pattern-finding algorithms similar to those behind recent advances in image and speech recognition and other forms of artificial intelligence, he and his collaborators successfully predicted temblors in a model laboratory system—a feat that has since been duplicated by researchers in Europe.

Now, in a paper posted this week on the scientific preprint site arxiv.org, Johnson and his team report that they’ve tested their algorithm on slow slip quakes in the Pacific Northwest. The paper has yet to undergo peer review, but outside experts say the results are tantalizing. According to Johnson, they indicate that the algorithm can predict the start of a slow slip earthquake to “within a few days—and possibly better.”

“This is an exciting development,” said Maarten de Hoop, a seismologist at Rice University who was not involved with the work. “For the first time, I think there’s a moment where we’re really making progress” toward earthquake prediction.

Mostafa Mousavi, a geophysicist at Stanford University, called the new results “interesting and motivating.” He, de Hoop, and others in the field stress that machine learning has a long way to go before it can reliably predict catastrophic earthquakes—and that some hurdles may be difficult, if not impossible, to surmount. Still, in a field where scientists have struggled for decades and seen few glimmers of hope, machine learning may be their best shot.

Sticks and Slips

The late seismologist Charles Richter, for whom the Richter magnitude scale is named, noted in 1977 that earthquake prediction can provide “a happy hunting ground for amateurs, cranks, and outright publicity-seeking fakers.” Today, many seismologists will tell you that they’ve seen their fair share of all three.

But there have also been reputable scientists who concocted theories that, in hindsight, seem woefully misguided, if not downright wacky. There was the University of Athens geophysicist Panayiotis Varotsos, who claimed he could detect impending earthquakes by measuring “seismic electric signals.” There was Brian Brady, the physicist from the US Bureau of Mines who in the early 1980s sounded successive false alarms in Peru, basing them on a tenuous notion that rock bursts in underground mines were telltale signs of coming quakes.

Paul Johnson is well aware of this checkered history. He knows that the mere phrase “earthquake prediction” is taboo in many quarters. He knows about the six Italian scientists who were convicted of manslaughter in 2012 for downplaying the chances of an earthquake near the central Italian town of L’Aquila, days before the region was devastated by a magnitude 6.3 temblor. (The convictions were later overturned.) He knows about the prominent seismologists who have forcefully declared that “earthquakes cannot be predicted.”

Leave a Reply

Discover more from Ultimatepocket

Subscribe now to keep reading and get access to the full archive.

Continue reading